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ABSTRACT

Humans’ experience of the world is profoundly multimodal from the beginning,
so why do existing state-of-the-art language models only use text as a modality to
learn and represent semantic meaning? In this paper we review the literature on
the role of embodiment and emotion in the interactive setting of spoken dialogue
as necessary prerequisites for language learning for human children, including
how words in child vocabularies are largely concrete, then shift to become more
abstract as the children get older. We sketch a model of semantics that leverages
current transformer-based models and a word-level grounded model, then explain
the robot-dialogue system that will make use of our semantic model, the setting
for the system to learn language, and existing benchmarks for evaluation.

1 INTRODUCTION

Smith & Gasser (2005) showed that babies’ experience of the world is profoundly multimodal: ba-
bies live in a physical world full of rich regularities that organize perception, action and thought.
Babies explore the world in non goal-oriented ways, and babies learn in a social world to learn a
shared linguistic communicative system that is symbolic. Indeed, a growing body of literature in-
cluding child development, psychology, linguistics, and computational linguistics makes a strong
case that the process of language learning (indeed, general human cognition) is embodied, inter-
active, and enacted (Pulvermüller, 1999; Lakoff & Johnson, 1999; Barsalou, 2008; Johnson, 2008;
Smith & Samuelson, 2009; Di Paolo et al., 2018; Bisk et al., 2020). I argue that the setting (i.e.,
where and how the learning takes place) and stages of progression of how language is learned
matters for holistic knowledge of semantic meaning, which has implications for how language is
modeled computationally, especially in light of the fact that most language models, including recent
transformer-based models like BERT (Devlin et al., 2018) and GPT-3 are derived abstractly from
adult-written text.

Figure 1: Average Age-of-Acquisition ratings for each
entry in a subset of the WordNet dictionary: average
ratings for word entries (blue) are higher than ratings
for words in the definitions for those entries (orange).

Basic evidence that progression of learn-
ing matters is found in age-of-acquisition
(AoA) datasets where known words are
annotated with the average age when chil-
dren are able to produce those words.
Kuperman et al. (2012) presented ratings
for over 30,000 English words (including
nouns, verbs, and adjectives). For example
the word red’s rating is 3.68 (i.e., 3 years
+ 0.68 towards the 4th year), and abandon
is 8.32. Taking definitions from WordNet
(Miller, 1995) for words that exist on the
AoA dataset (totaling 26,919 words), the
average AoA age for the words is 11 years
(std 3.04), whereas the average AoA age
for all of the words in the definitions is 6.59 (std 2.67). This is further illustrated in Figure 1, show-
ing that words that make up definitions in the WordNet dictionary are learned much younger. This
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seems trivial; obviously words that are learned earlier in life are used to learn the meaning (or at
least the definition) of words later in life, but language models and the data they leverage do not take
this progression into account.

Vincent-Lamarre et al. (2016) gave this deeper consideration and found that recursively removing
all words that are reachable by their definitions, but that do not define any further words, a dictionary
can be reduced to 10% of its size. This can further be reduced to a strongly connected subset of words
that all other words can be defined from, which comprises only about 1% of the dictionary. This is
important because while many words are defined by other words, there is a core subset of words that
cannot be defined by other words (e.g., what is the dictionary definition of the word red?), but rather
must be experienced directly, otherwise meaning of all words are completely ungrounded; “just
strings of meaningless symbols (defining words) pointing to meaningless symbols (defined words)”
which is precisely what the symbol grounding problem is (Harnad, 1990).1 Vincent-Lamarre et al.
(2016) showed that the “core” words, from which all other words are eventually defined, are learned
earlier in life and they are more concrete; i.e., they are words that denote physical, tangible objects
and proprioperceptive embodied states. This isn’t to say that humans don’t have the capacity for
abstraction without concrete experience. Indeed, all words are to some degree abstract because
they make an abstract categorization, even ones that directly denote perceptual experience (Harnad,
2017). But given the literature cited above, no human would likely arrive at abstract thought without
something to abstract over, i.e., words that denote concrete, physical entities.

Requirements Despite important advances for natural language processing (NLP) tasks and ap-
plications, it is clear that models trained only on text are missing critical semantic information (see,
for example, Rogers et al. (2020) which reviews relevant literature). These kinds of text-only mod-
els make an abstractness assumption because the only “context” they make use of is lexical context
(i.e., words are only “defined” by other words), whereas a holistic model of meaning requires lex-
ical, embodied (including emotion, see Lane & Nadel (2002); Moro et al. (2020)), perceptual (i.e.,
connected to the world–symbol grounding), and interactive (i.e., conversational grounding (Clark,
1996)) context in the language learning process.

2 RESEARCH PROPOSAL

The goal of this research project is to work towards a model of semantic meaning that handles
concrete and abstract meaning acquisition, encodes emotion, and is learned in a setting similar to
that of a child: embodied, spoken interaction.

Embodiment The semantic model needs to be housed in a physical body that can perceive and act
in the world. We opt to use robotic platforms, beginning with Anki Cozmo which has been shown
to be suitable for the setting of first-language acquisition because people perceive Cozmo to have
a young age (Plane et al., 2018), though clearly Cozmo is nothing like a real child in its sensory
capabilities or afforances. Cozmo’s perceptual abilities include camera input, we add an external
microphone, and tracking of internal state variables (e.g., lift height, head angle, wheel speed) and
Cozmo’s abilities for action include driving forward and backward, turning, lifting and lowering a
small lift arm that can move specific types of objects, as well as up and down movement of the head
and speech synthesis with a young-sounding voice.

Interaction The setting for the robot to learn language is face-to-face spoken, interactive dialogue
which is the basic setting where humans learn their first language (Fillmore, 1981). This situated
setting requires a spoken dialogue system (SDS) that is well-suited for robots. Following Kenning-
ton et al. (2020), such a robot-ready SDS must be (1) modular so it can integrate with various robot
modules, (2) multimodal the semantic model should incorporate perception (including propriop-
erception), (3) distributive so robot modules and SDS modules can communicate with each other
across distributed hardware, (4) incremental so processing can happen quickly and immediately,
and (5) aligned in that sensors and actions must be synchronized temporally. The incremental re-
quirement is crucial: the semantic model must not wait for full, grammatical utterances; rather, it

1Note that the author of Harnad (1990) is an author of Vincent-Lamarre et al. (2016), which makes these
claims.
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should process by word (or sub-word) increments because humans process spoken input in real-time
(Eberhard et al., 1995), though many models of semantics require full, sentence-level input.

Emotion The meanings of many words have emotion as part of their connotation (Lane & Nadel,
2002) and that emotion plays a role in the meaning of abstract words (Vigliocco et al., 2014). Fol-
lowing Moro et al. (2020), similar to semantic word meaning, emotions can be viewed as on a con-
tinuum between abstract and concrete; abstract according their lexical categories (e.g., happiness,
fear, anger) distributed with text (Barrett, 2017), and concretely through affect which is a biological
system and a fundamental part of embodiment (Vigliocco et al., 2014). In contrast to abstract emo-
tion concepts, affect is a more basic underpinning for emotion, ranging from unpleasant to pleasant
(valence) and from agitated to calm (arousal), which, like vision, is something that could potentailly
be grounded into if a model exists. We use the model we introduced in (McNeill & Kennington,
2019) as a proxy for affect as it maps from robot behaviors to a distribution over 16 affects that were
labeled by humans who observed the behaviors for affective display.

Open Questions This research highlights some important questions relating to semantic meaning
of language, how it is learned, the role of emotion in meaning (and language acquisition) which
has implications for NLP, robotics, human-robot interaction, and artificial intelligence applications.
Specifically, we ask the following questions:

• What semantic model fulfills the requirements of being grounded, can learn meanings of
words with only a few examples (i.e., fast-mapping as children can do) or directly from
explanation, and can be learned through interaction with others and with the physical envi-
ronment?

• How can concrete and abstract meaning be learned and represented in that model?
• Can affect and emotion help reconcile the concrete and abstract meaning learning and rep-

resentations?

Model Sketch Two models that inspire our proposed model (though there are many other vision-
lanuage models) are (1) VilBERT (Lu et al., 2019), a dual-transfomer architecture that brings to-
gether textual embeddings and images for image description generation, more recently leveraged
for visual dialogue (Murahari et al., 2019), and (2) the words-as-classifiers (WAC) model (Kenning-
ton & Schlangen, 2015), a simple grounded modal that amounts to a binary classifier for each word,
each classifier yields a “fitness” score, given a representation of a visual object and word in question.
Schlangen et al. (2016) use the WAC model with images of real objects in a reference resolution task,
using vectorized representations of objects from a convolutional neural network trained on imagenet
data. WAC has been used as a grounded model for modalities beyond vision; for example, Moro
et al. (2020) grounded WAC into low-level affect predictions which included robot internal states
and audio representations.

Both models have their advantages. VilBERT is transformer-based and leverages BERT for repre-
senting language, making it robust to various language input. Being a word-level model, WAC has
the advantage of being useable in an incremental SDS setting–a requirement for robot-ready SDS–
and can learn fitness scores with only a few training examples. For example, McNeill & Kennington
(2020) recently used WAC in an interactive language acquisition study using WAC as the semantic
model on the Cozmo robot with human participants; WAC was able to quickly learn a handful of vo-
cabulary words despite the short interactions. Both models have disadvantages. VilBERT, like most
neural models, is data hungry and uses BERT which is trained on text, yet children learn interac-
tively and often with only a small set of examples. Moreover, VilBERT is currently strictly designed
to model the visual modality taken from images. WAC suffers from two strong assumptions. First,
that all words are trained and applied independently from each other (making WAC’s composition
strategy quite limiting–it simply multiplies the fitness scores together to form sentence-evel scores
for referring to objects) and second, that all words fully denote concrete things, despite many words
being abstract and therefore do not have physical manifestations (e.g., utopia or beneficial).

Our current work explores using WAC classifiers as embeddings for the VilBERT model by training
WAC classifiers (i.e., simple multi-layer perceptrons) on images using positive and negative image
examples for each word, then extracting the coefficients of those classifiers (i.e., concatenate the
coefficients for each layer, forming a vector) that we then use as input embeddings for the language
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Figure 2: Overview of proposed system. The model takes in 6 modalities (depicted in the circles);
modalities come from the user’s speech, shared environment, or robot. Emotion is grounded into by
the model, and (including emotional) robot behaviors facilitate the interaction. The user utterance
contains concrete and abstract terms.

side of the VilBERT model. Current results show promise on the visual dialogue benchmark (Mu-
rahari et al., 2019) that this is a useful addition to the VilBERT model, thereby unifying the two
models and overcoming some of the assumptions and shortcomings of each model used alone, but
more work is needed for a model that fulfills all of the requirements and works for a robotic platform
in a spoken dialogue setting.

System We will use the system for incremental dialogue described in Kennington et al. (2020),
which has modules for speech recognition, object detection using YOLOv4 (Bochkovskiy et al.,
2020), and object feature representation by using the topdropout layer from EfficientNet (Tan & Le,
2019) to feed into our semantic model. The rrSDS platform has bindings for the Cozmo robot, as
well as bindings for OpenDial (Lison & Kennington, 2016), which we will use for dialogue act and
robot action decisions. We will use the model described in McNeill & Kennington (2019) to map
from robot modalities to a distribution over a representation of affect that our model of semantics
will ground into. Our system is portrayed visually in Figure 2, including the Cozmo robot.

Evaluation Plan We will recruit human participants and task them with interacting with Cozmo
first by referring to concrete objects (e.g., scissors near you, as done in McNeill & Kennington
(2020), then task them with engaging in more abstract comparisons or truth claims (e.g., scissors
are sharp). To gain exposure to larger vocabulary, we will put Cozmo in varied contexts with
participants where participants also interact with Cozmo at intervals across a long time span. We
hypothesize that this will result in a representation of semantic meaning encoded in a model like
VilBERT that has higher fidelity to the setting and circumstances in which human children learn
language. We will continue our ongoing work in using this model on known benchmarks (e.g.,
GLUE (Wang et al., 2018), visual dialogue (Murahari et al., 2019)) to compare with existing models
that are only trained on text data.

3 CONCLUSIONS

The process whereby human children learn language is vastly different from the process whereby ex-
isting state-of-the-art language models learn language. While current advancements in multimodal
language grounding are moving in the right direction, the setting (i.e., situated dialogue) and lack of
embodiment still pose a challenge. Addressing these requirements in a single system is by no means
low-hanging research fruit; it requires interdisciplinary background in NLP, SDS, and human-robot
interaction research, but we believe that the efforts will be beneficial in working towards natural
communication with automated systems, including robots.
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