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ABSTRACT

We present a novel interactive learning protocol that enables training request-
fulfilling agents by only verbally describing their activities. Our protocol gives rise
to a new family of interactive learning algorithms that offer complementary advan-
tages against traditional algorithms like imitation learning (IL) and reinforcement
learning (RL). We develop an algorithm that practically implements this protocol
and employ it to train agents in two challenging request-fulfilling problems using
purely language-description feedback. Empirical results demonstrate the strengths
of our algorithm: compared to RL baselines, it is more sample-efficient; compared
to IL baselines, it achieves competitive success rates while not requiring feedback
providers to have agent-specific expertise. We also provide theoretical guarantees
of the algorithm under certain assumptions on the teacher and the environment.

The goal of a request-fulfilling agent is to map a given language request in a situated environment to
an execution that accomplishes the intent of the request (Winograd, 1972; Chen & Mooney, 2011;
Tellex et al., 2012; Artzi et al., 2013; Misra et al., 2017; Anderson et al., 2018; Chen et al., 2019;
Nguyen et al., 2019; Nguyen & Daumé III, 2019; Chen et al., 2020; 2021; Shridhar et al., 2020).
Developing request-fulfilling agents is an important step towards creating autonomous assistants
that communicate with humans naturally. Request-fulfilling agents have been typically trained using
non-verbal interactive learning protocols such as imitation learning (IL) which assumes labeled
executions as feedback (Mei et al., 2016; Anderson et al., 2018), or reinforcement learning (RL)
which uses scalar rewards as feedback (Chaplot et al., 2018; Hermann et al., 2017; Zhu et al., 2017).
We introduce a new interactive learning protocol for training these agents called ILIAD: Interactive
LearnIng from Activity Description, where feedback is limited to language descriptions of executions.

Algorithm 1 presents the ILIAD protocol. Learning proceeds in episodes of interaction between
an agent policy and a teacher in an environment with state space S, action space A, and transition
function T : S × A → ∆(S), where ∆(S) denotes the space of all probability distributions over
S. LetR = {R : S ×A → [0, 1]} be a set of reward functions. Each episode starts with the agent
being presented with a task q sampled from a distribution P?(q). Formally, a task q is defined by
a tuple (R, s1, d

?) of reward function R ∈ R, start state s1 ∈ S, and a language request d? ∈ D,
where D is the set of all nonempty strings generated from a finite vocabulary. The agent starts
in s1 and is presented with d? but does not observe R or any rewards generated by it. Intuitively,
the request d? verbally communicates the optimal behavior for the reward function R to the agent.
For example, in robot navigation, a request d? = “go to the kitchen” specifies a task given by a
reward function that is maximized when the robot is in the kitchen. To make decisions, the agent
maintains a request-conditioned policy πθ : S × D → ∆(A) with parameters θ, which takes in a
state s ∈ S and a request d ∈ D, and outputs a probability distribution over A. Using this policy,
it can generate an execution ê = (s1, â1, s2, · · · , sH , âH), where H is the task horizon (the time
limit), âi ∼ πθ (· | si, d) and si+1 ∼ T (· | si, âi) for every i. We use the notation e ∼ Pπ (· | s1, d)
to denote sampling an execution e by following policy π given a start state s1 and a request d.

The feedback mechanism in ILIAD is provided by a teacher that can describe executions in language.
The teacher is modeled by a fixed distribution PT : (S × A)H → ∆(D), where (S × A)H is the
space over H-step executions. The teacher enables language understanding by providing the agent
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Algorithm 1 ILIAD protocol. Details of line 4 and line 6 are left to specific implementations.

1: Initialize agent policy πθ : S × D → ∆(A)
2: for n = 1, 2, · · · , N do
3: World samples q = (R, d?, s1) ∼ P?(·) (reward function R is not revealed to agent)
4: Agent generates execution ê given πθ, d?, and s1
5: Teacher generates description d̂ ∼ PT (· | ê)
6: Agent uses

(
d?, ê, d̂

)
to update πθ

return πθ

Algorithm 2 ADEL: our implementation of the ILIAD protocol. PT (d | e) is the teacher model.

1: Input: approximate marginal Pπω (e | s1), mixing rate λ ∈ [0, 1], annealing rate β ∈ (0, 1)
2: Initialize πθ : S × D → ∆(A) and B = ∅
3: for n = 1, 2, · · · , N do
4: World samples task q = (R, d?, s1) ∼ P?(·)
5: Agent generates ê ∼ λPπω (· | s1) + (1− λ)Pπθ (· | s1, d?)
6: Teacher generates description d̂ ∼ PT (· | ê). Add datapoint: B ← B ∪

(
ê, d̂
)

7: Update agent policy: θ ← maxθ′
∑

(ê,d̂)∈B
∑

(s,as)∈ê log πθ′(as | s, d̂) where as is the
action taken by the agent in state s. Anneal the mixing rate: λ← λ · β.

return πθ

with a language description of the agent’s execution d̂ ∼ PT (· | ê). We assume that the descriptions
are specified in the same language that is used to specify the requests. Hence, by grounding the
descriptions to the corresponding executions, the agent can acquire knowledge about the description
language and thus can gradually improve its request-fulfilling capability. Crucially, the agent receives
no other feedback such as ground-truth demonstration (Mei et al., 2016), scalar reward (Hermann
et al., 2017), or constraint (Miryoosefi et al., 2019). At test time, the teacher is not present and the
agent must execute requests autonomously. The objective of the agent is to find a policy π with
maximum value, where we define the policy value V (π) as:

V (π) = Eq∼P?(·),ê∼Pπ(·|s1,d?)

[
H∑
i=1

R (si, âi)

]
(1)

To formulate the learning problem in ILIAD, we define a joint distribution over tasks and executions:

P? (e,R, s1, d) = Pπ? (e | s1, d)P? (R, d, s1) (2)

where π? be the optimal policy that maximizes V (π). We then implement the ILIAD protocol by
reducing it to a density-estimation problem: given that we can effectively draw samples from the
marginal P?(s1, d) and an approximately consistent teacher PT (d | e) ≈ P?(d | e), how do we
learn a policy πθ such that Pπθ (e | s1, d) is close to P?(e | s1, d)? Here, the marginal P?(s1, d), the
consistent teacher P?(d | e), and the (ground-truth) execution distribution P?(e | s1, d) = Pπ?(e |
s1, d) are obtained from the joint distribution defined in Equation 2.

We develop an algorithm named ADEL: Activity-Description Explorative Learner (Algorithm 2) that
offers practical solutions to this problem. ADEL implements a semi-supervised sampling scheme that
efficiently explores the execution space. Specifically, in the algorithm, the agent generates executions
from a mixture distribution that combines a request-agnostic execution distribution Pπω (e | s1), which
can be learned from unlabeled executions, and a request-guided execution distribution Pπθ (· | s1, d?)
(line 5). The agent then employs behavior cloning (Pomerleau, 1991) to ground descriptions to
executions (line 7). We theoretically prove convergence for a variant of ADEL in the contextual
bandit setting (Langford & Zhang, 2008).

Our paper does not argue for the primacy of ILIAD over other protocols like RL or IL. In fact, an
important point we raise is that there are multiple, possibly competing metrics for comparing learning
protocols. We focus on the trade-off between the learning effort of the agent and the teacher in each
protocol (Table 1). In all protocols, the agent and the teacher establish a communication channel that
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Table 1: Trade-offs between the learning effort of the agent and the teacher in learning protocols.
Each protocol employs a different medium for the teacher to convey feedback. If a medium is not
natural to the teacher (e.g. IL-style demonstration), it must learn to encode feedback intent using that
medium (teacher communication-learning effort). Similarly, if a medium is not natural to the agent
(e.g. human language), it needs to learn to interpret feedback (agent communication-learning effort).
The agent also learns tasks from information decoded from feedback (agent task-learning effort).
The qualitative claims on the “agent learning effort” column summarize our empirical findings on the
learning efficiency (measured by sample complexity) of these protocols.

Learning effort

Feedback Teacher Agent
Protocol medium (communication learning) (communication & task learning)

IL Demonstration Highest Lowest
RL Scalar reward None Highest
ILIAD Language description None Medium

Table 2: Main results. We report means and standard deviations of success rates (%) over five runs
with different random seeds. RL-Binary and RL-Cont refer to the RL settings with binary and
continuous rewards, respectively. Sample complexity is the number of training episodes (or number
of teacher responses) required to reach a validation success rate of at least c.

Sample complexity ↓

Learning setting Algorithm Val success rate (%) ↑ Test success rate (%) ↑ # Demonstrations # Rewards # Descriptions

Vision-language navigation (c = 30.0%)
IL DAgger 35.6± 1.35 32.0± 1.63 45K± 26K - -

RL-Binary REINFORCE 22.4± 1.15 20.5± 0.58 - +∞ -
RL-Cont REINFORCE 11.1± 2.19 11.3± 1.25 - +∞ -

ILIAD ADEL 32.2± 0.97 31.9± 0.76 - - 406K± 31K

Word modification (c = 85.0%)
IL DAgger 92.5± 0.53 93.0± 0.37 118K± 16K - -

RL-Binary REINFORCE 0.0± 0.00 0.0± 0.00 - +∞ -
RL-Cont REINFORCE 0.0± 0.00 0.0± 0.00 - +∞ -

ILIAD ADEL 88.1± 1.60 89.0± 1.30 - - 573K± 116K

allows the teacher to encode feedback and send it to the agent, who learns tasks based on information
decoded from feedback. At one extreme, IL places the burden of establishing the communication
channel entirely on the teacher. To provide a demonstration, the teacher in IL must learn to control the
agent to accomplish tasks by specifying actions that lie in the agent’s action space.1 To compensate
for this effort, the agent usually learns very efficiently with IL because it does not have to learn to
interpret feedback, and the feedback directly specifies desired behavior. At another extreme, we
have RL and ILIAD, where the teacher provides feedback via agent-agnostic media (reward and
language, respectively). RL eliminates the agent communication-learning effort by hard-coding the
semantics of scalar rewards into the learning algorithm.2 But the trade-off of using such limited
feedback is that the effort required by the agent to learn the task increases. State-of-the-art RL
algorithms are notorious for their high sample complexity, making them expensive to use outside
simulators (Hermann et al., 2017; Chaplot et al., 2018; Chevalier-Boisvert et al., 2019). ILIAD offers
a compromise between RL and IL: it can be more sample-efficient than RL while not requiring the
teacher to master the agent’s control interface. Overall, no protocol is superior in all metrics and the
choice of protocol depends on users’ preferences.

We empirically evaluate ADEL against IL and RL baselines on two tasks: vision-language navigation
(Anderson et al., 2018), and word-modification via regular expressions (Andreas et al., 2018).

1Third-person or observational IL (Stadie et al., 2017; Sun et al., 2019) allows the teacher to demonstrate
tasks with their action space. However, this framework is non-interactive because the agent imitates pre-collected
demonstrations and does not interact with a teacher. We consider interactive IL (Ross et al., 2011), which is
shown to be more effective than non-interactive counterparts.

2By design, RL algorithms understand that higher reward value implies better performance.
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Exit the 
bedroom and 

turn right. Enter 
the living room 

and stop next to 
the sofa.

(a) Vision-language navigation (NAV): a (robot) agent fulfills
a navigational natural-language request in a photo-realistic
simulated house. Locations in the house are connected as a
graph. In each time step, the agent receives a photo of the
panoramic view at its current location (due to space limit, here
we only show part of a view). Given the view and the language
request, the agent chooses an adjacent location to go to.

(b) Word modification via regular expressions
(REGEX): an agent is given an input word
and a natural-language request that asks it to
modify the word. The agent outputs a reg-
ular expression that follows our specific syn-
tax. The regular expression is executed by the
Python’s re.sub() method to generate an
output word.

Figure 1: Illustrations of the two request-fulfilling problems that we conduct experiments on.

“Walk through the 
hallway and turn right. 
Walk past the dining table 
and stop in the doorway.”

“Enter the house and go 
left. Walk down the hall, 
and take a right at the end 
of the hallway. Stop outside 
of the bathroom door.”

“Walk through the living 
room and turn left. Walk 
towards the pool table 
and stop in the doorway.”

Figure 2: A qualitative example of training an agent to fulfill a navigation request in 3D environments
(Anderson et al., 2018) using ADEL. The agent receives a request “Enter the house...” which implies
the path. Initially, it does not understand language and thus wanders far from the goal. Its execution
(the path) is described as “Walk through the living room...”. To ground the description language,
the agent learns to generate the path conditioned on the description. After a number of interactions,
its execution ( ) is closer to the optimal path. As this process iterates, the agent gradually improves
its understanding of the description language and thus also executes requests more precisely.

Figure 2 illustrates an example of training an agent to fulfill a navigation request using ADEL. Our
results (Table 2) show that ADEL significantly outperforms RL baselines in terms of both learning
efficiency and effectiveness. On the other hand, ADEL’s success rate is competitive with those of
the IL baselines on the navigation task and is lower by 4% on the word modification task. It takes
approximately 5-8 times more training episodes than the IL baselines to reach comparable success
rates, which is quite respectable considering that the algorithm has to search in an exponentially large
space for the ground-truth executions whereas the IL baselines are given these executions. Therefore,
ADEL can be a preferred algorithm whenever annotating ground-truth executions is not feasible or is
substantially more expensive than describing executions. For example, in the word-modification task,
ADEL teaches the agent without requiring a teacher with knowledge about regular expressions, who
can be costly to recruit in practice. We believe the capability of non-experts to provide feedback will
make ADEL and more generally the ILIAD protocol a strong contender in many scenarios.
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