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ABSTRACT

Recent work on audio-visual navigation assumes a constantly-sounding target and
restricts the role of audio to signaling the target’s spatial placement. We introduce
semantic audio-visual navigation, where objects in the environment make sounds
consistent with their semantic meanings (e.g., toilet flushing, door creaking) and
acoustic events are sporadic or short in duration. We propose a transformer-based
model to tackle this new semantic AudioGoal task, incorporating an inferred goal
descriptor that captures both spatial and semantic properties of the target. Our
model’s persistent multimodal memory enables it to reach the goal even long
after the acoustic event stops. In support of the new task, we also expand the
SoundSpaces audio simulation platform to provide semantically grounded object
sounds for an array of objects in Matterport3D. Our method strongly outper-
forms existing audio-visual navigation methods by learning to associate seman-
tic, acoustic, and visual cues. Project: http://vision.cs.utexas.edu/
projects/semantic_audio_visual_navigation. Please see the full
paper for more details.

1 INTRODUCTION

An autonomous agent interacts with its environment in a continuous loop of action and perception.
The agent needs to reason intelligently about all the senses available to it (sight, hearing, proprio-
ception, touch) to select the proper sequence of actions in order to achieve its task. For example, a
service robot of the future may need to locate and fetch an object for a user, go empty the dishwasher
when it stops running, or travel to the front hall upon hearing a guest begin speaking there.

Towards such applications, recent progress in visual navigation builds agents that use egocentric
vision to travel to a designated point in an unfamiliar environment (Gupta et al., 2017; Savva et al.,
2019), search for a specified object (Zhu et al., 2017; Chaplot et al., 2020a), or explore and map a
new space (Chen et al., 2019; Chaplot et al., 2020b). Limited new work further explores expanding
the sensory suite of the navigating agent to include hearing as well. In particular, methods tackling
the AudioGoal challenge use sound to get key directional and distance information about a sounding
target to which the agent must navigate (e.g., a ringing phone) (Chen et al., 2020a; Gan et al., 2020;
Chen et al., 2020b).

While exciting first steps, existing audio-visual (AV) navigation work has two key limitations. First,
prior work assumes the target object constantly makes a steady repeating sound (e.g., alarm chirp-
ing, phone ringing). While important, this corresponds to a narrow set of targets; in real-world
scenarios, an object may emit a sound only briefly or start and stop dynamically. Second, in current
models explored in realistic 3D environment simulators, the sound emitting target has neither a vi-
sual embodiment nor any semantic context. Rather, target sound sources are placed arbitrarily in the
environment and without relation to the semantics of the scene and objects. As a result, the role of
audio is limited to providing a beacon of sound announcing where the object is.

In light of these limitations, we introduce a novel task: semantic audio-visual navigation. In this
task, the agent must navigate to an object situated contextually in an environment that only makes
sound for a certain period of time. Semantic audio-visual navigation widens the set of real-world
scenarios to include acoustic events of short temporal duration that are semantically grounded in
the environment. It offers new learning challenges. The agent must learn not only how to associate
sounds with visual objects, but also how to leverage the semantic priors of objects (along with
any acoustic cues) to reason about where the object is likely located in the scene. For example,
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Figure 1: Proposed task: Semantic audio-visual navigation. The agent must navigate to a sounding
object in the 3D environment. Since the sound may stop while the agent searches for the object,
the agent is incentivized to learn the association between how objects look and sound, and to build
contextual models for where different semantic sounds are more likely to occur (e.g., water in the
bathroom).

hearing the dishwasher stop running and issue its end of cycle chime should suggest both what
visual object to search for as well as the likely paths for finding it, i.e., towards the kitchen rather
than the bedroom. Notably, in the proposed task, the agent is not given any external information
about the goal (such as a displacement vector or name of the object to search for). Hence the agent
must learn to leverage sporadic acoustic cues that may stop at any time as it searches for the source,
inferring what visual object likely emitted the sound even after it is silent. See Figure 1.

To tackle semantic AudioGoal, we introduce a deep reinforcement learning model that learns the
association between how objects look and how they sound (Fig. 2). Before seeing the target ob-
ject, the model learns to hypothesize the goal properties (e.g., location and object category) from
the received acoustic cues. Coupled with a transformer, it learns to attend to the previous visual
and acoustic observations in its memory—conditioned on the predicted goal descriptor—to navi-
gate to the audio source. Furthermore, to support this line of research, we instrument audio-visual
simulations for real scanned environments such that semantically relevant sounds are attached to
semantically relevant objects.

We evaluate our model on 85 large-scale real-world environments with a variety of semantic objects
and their sounds. Our approach outperforms state-of-the-art models in audio-visual navigation with
up to 8.9% improvement in SPL (Table 1). Furthermore, our model is robust in handling short acous-
tic signals emitted by the goal with varying temporal duration, and compared to the competitors, it
more often reaches the goal after the acoustic observations end. In addition, our model maintains
good performance in the presence of environment noise (distractor sounds) compared to baseline
models. Finally, we demonstrate the potential for embodied agents to learn about how objects look
and sound through interactions with the 3D environment.

2 EXPERIMENTS

Baselines. We compare our model to six baselines and existing work: Random, ObjectGoal RL,
Chen et al. (2020a), Gan et al. (2020), Chen et al. (2020b) and SMT (Fang et al., 2019) + Audio. All
models use the same reward function and inputs. For all methods, there is no actuation noise since
audio rendering is only available at grid points (see Chen et al. (2020a) for details).
Metrics. We evaluate the following navigation metrics: 1) success rate: the fraction of successful
episodes; 2) success weighted by inverse path length (SPL): the standard metric (Anderson et al.,
2018) that weighs successes by their adherence to the shortest path; 3) success weighted by inverse
number of actions (SNA) (Chen et al., 2020b): this penalizes collisions and in-place rotations by
counting number of actions instead of path lengths; 4) average distance to goal (DTG): the agent’s
distance to the goal when episodes are finished; 5) success when silent (SWS): the fraction of suc-
cessful episodes when the agent reaches the goal after the end of the acoustic event.
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Figure 2: In our model, the agent first encodes input observations and stores their features in memory
M . Then it uses the acoustic cues to dynamically infer and update a goal descriptor Dt of the target
object, which contains both location Lt and object category Ct information about the goal. By
conditioning the agent’s scene memory on the goal descriptor, the learned state representation st
preserves information most relevant to the goal. Our transformer-based policy network attends to
the encoded observations in M with self-attention to reason about the 3D environment seen so far,
and it attends to Me with Dt to capture possible associations between the hypothesized goal and the
visual and acoustic observations to predict the state st. Then, st is fed to an actor-critic network,
which predicts the next action at. The agent receives its reward from the environment based on how
close to the goal it moves and whether it succeeds in reaching it.

Navigation results. Following the evaluation protocol defined by Chen et al. (2020a), we evaluate
all models in two settings: 1) heard sounds—train and test on the same sound 2) unheard sounds—
train and test on disjoint sounds. In both cases, the test environments are always unseen, hence both
require generalization. All results are averaged over 1,000 test episodes.

Table 1 shows the results. We refer to our model as SAVi: Semantic Audio-Visual Navigation
model. Our approach outperforms all other models by a large margin on all metrics—with 8.9%,
0.3%, 7.2%, 7.2% absolute gains in SPL on heard sounds and 3.8%, 4.9%, 4%, 5.3% SPL gains on
unheard sounds compared to Chen et al. (2020a), Gan et al. (2020), AV-WaN (Chen et al., 2020b),
and SMT (Fang et al., 2019), respectively. This shows our model leverages audio-visual cues intel-
ligently and navigates to goals more efficiently. Although Gan et al. (2020) also leverages external
supervision for training the location predictor, which leads to good performance on heard sounds,
this is not enough to solve the task in the more challenging unheard sounds setting. Our method has
the advantage of allowing the agent to fully leverage the semantic and spatial cues from audio along
with its visual perception to locate the sounding objects. According to previously reported results,
AV-WaN represents the state-of-the-art for AudioGoal audio-visual navigation. Our SAVi model’s
gains over AV-WaN show both 1) the distinct new challenges offered by the semantic AudioGoal
task, and 2) our model’s design effectively handles them.1

In addition, our model improves the success-when-silent (SWS) metric by a large margin compared
to the closest competitor. This emphasizes the advantage of our goal descriptor module. The explicit
and persistent descriptor for the goal in our model helps to maintain the agent’s focus on the target
even after it stops emitting a sound. Although the SMT+Audio (Fang et al., 2019) model also
has access to a large memory pool and can leverage implicit goal information from old observations,

1While AV-WaN (Chen et al., 2020b) reports large performance improvements over Chen et al. (2020a) on
the standard AudioGoal task, we do not observe similar margins between the two models here. We attribute
this to temporal gaps in the memory caused by AV-WaN’s waypoint formulation—which are not damaging for
constantly sounding targets, but do cause problems for semantic AudioGoal.
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Heard Sounds Unheard Sounds
Success ↑ SPL ↑ SNA ↑DTG ↓ SWS ↑ Success ↑ SPL ↑ SNA ↑DTG ↓ SWS ↑

Random 1.4 3.5 1.2 17.0 1.4 1.4 3.5 1.2 17.0 1.4
ObjectGoal RL 0.9 0.5 0.4 16.7 0.7 0.9 0.5 0.4 16.7 0.7

Chen et al. (2020a) 21.6 15.1 12.1 11.2 10.7 18.0 13.4 12.9 12.9 6.9
Gan et al. (2020) 29.3 23.7 23.0 11.3 14.4 15.9 12.3 11.6 12.7 8.0

AV-WaN 20.9 16.8 16.2 10.3 8.3 17.2 13.2 12.7 11.0 6.9
SMT + Audio 22.0 16.8 16.0 12.4 8.7 16.7 11.9 10.0 12.1 8.5
SAVi (Ours) 33.9 24.0 18.3 8.8 21.5 24.8 17.2 13.2 9.9 14.7

Table 1: Navigation performance on the SoundSpaces Matterport3D dataset (Chen et al., 2020a).
Our SAVi model has higher success rates and follows a shorter trajectory (higher SPL) to the goal
compared to the state-of-the-art. Equipped with its explicit goal descriptor and having learned se-
mantically grounded object sounds from training environments, our model is able to reach the goal
more efficiently—even after it stops sounding—at a significantly higher rate than the closest com-
petitor (SWS).
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Figure 3: Navigation trajectories for our SAVi model from the test data. In the first episode
(top/magenta) the agent hears a water dripping sound and in the second episode (bottom/orange)
a sound of opening and closing a door. For each episode, we show three egocentric visual views
(right) sampled from the agent’s trajectory at the start location 1©, when the sound stops 2©, and at
the end location 3©. We see that for the top episode, the acoustic event lasts for two thirds of the
trajectory and when the sound stops the agent has an accurate estimate of the object location that
helps it find the sounding object (the sink). The second episode (bottom) has a much shorter acoustic
event. The agent’s estimate of the object location is inaccurate when the sound stops but still helps
the agent as a general directional cue. The agent leverages this spatial cue and the semantic cue from
its estimate of the object category, a cabinet, to attend to its multimodal memory and find the object
in the kitchen and end the episode successfully.

lacking our goal descriptor and the accompanying goal-driven attention, it underperforms our model
by a sizeable margin.

As expected, Random does poorly on this task due to the challenging complex environments. Al-
though ObjectGoal RL has the goal’s ground truth category label as input, it fails in most cases. This
shows that knowing the category label by itself is insufficient to succeed in this task; the agent needs
to locate the specific instance of that category, which is difficult without the acoustic cues.

Example navigation trajectories. Figure 3 shows test navigation episodes for our SAVi model.
The agent uses its acoustic-visual perception and memory along with the spatial and semantic cues
from the acoustic event, whether from a long event (water dripping sound) or a short one (opening
and closing a door sound), to successfully find the target objects (the sink and the cabinet). Please
see the project website for navigation videos.
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