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ABSTRACT

[This work was published at NeurIPS 2020] A large part of the current success of
deep learning lies in the effectiveness of data – more precisely: labelled data. Yet,
labelling a dataset with human annotation continues to carry high costs, especially
for videos. While in the image domain, recent methods have allowed to generate
meaningful (pseudo-) labels for unlabelled datasets without supervision, this de-
velopment is missing for the video domain where learning feature representations
is the current focus. In this work, we a) show that unsupervised labelling of a
video dataset does not come for free from strong feature encoders and b) propose
a novel clustering method that allows pseudo-labelling of a video dataset without
any human annotations, by leveraging the natural correspondence between the au-
dio and visual modalities. An extensive analysis shows that the resulting clusters
have high semantic overlap to ground truth human labels. We further introduce
the first benchmarking results on unsupervised labelling of common video datasets
Kinetics, Kinetics-Sound, VGG-Sound and AVE1.

INTRODUCTION

One of the key tasks in machine learning is to convert continuous perceptual data such as images
and videos into a symbolic representation, assigning discrete labels to it. This task is generally
formulated as clustering (Hartigan, 1972). For images, recent contributions such as (Ji et al., 2018;
Van Gansbeke et al., 2020; Caron et al., 2018; Asano et al., 2020) have obtained good results by
combining clustering and representation learning. However, progress has been more limited for
videos, which pose unique challenges and opportunities. Compared to images, videos are much
more expensive to annotate; at the same time, they contain more information, including a temporal
dimension and two modalities, aural and visual, which can be exploited for better clustering. In
this paper, we are thus interested in developing methods to cluster video datasets without manual
supervision, potentially reducing the cost and amount of manual labelling required for video data.

Just as for most tasks in machine learning, clustering can be greatly facilitated by extracting a suit-
able representation of the data. However, representations are usually learned by means of manually
supplied labels, which we wish to avoid. Inspired by (Yan et al., 2020), we note that a solution is to
consider one of the recent state-of-the-art self-supervised representation learning methods and apply
an off-the-shelf clustering algorithm post-hoc. With this, we show that we can obtain very strong
baselines for clustering videos.

Still, this begs the question of whether even better performance could be obtained by simultane-
ously learning to cluster and represent video data. Our main contribution is to answer this question
affirmatively and thus to show that good clusters do not come for free from good representations.

In order to do so, we consider the recent method SeLa (Asano et al., 2020), which learns clusters and
representations for still images by solving an optimal transport problem, and substantially improve
it to work with multi-modal data. We do this in three ways. First, we relax the assumption made
in (Asano et al., 2020) that clusters are equally probable; this is not the case for semantic video
labels, which tend to have a highly-skewed distribution (Gu et al., 2018; Kay et al., 2017; Abu-
El-Haija et al., 2016), and extend the algorithm accordingly. Second, we account for the multi-
modal nature of video data, by formulating the extraction of audio and visual information from a
∗Joint first authors.
1Code is available at https://github.com/facebookresearch/selavi
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Figure 1: Our model views modalities as different augmentations and produces a multi-modal
clustering of video datasets from scratch that can closely match human annotated labels.

video as a form of data augmentation, thus learning a clustering function which is invariant to such
augmentations. For this to work well, we also propose a new initialization scheme that synchronizes
the different modalities before clustering begins. This encourages clusters to be more abstract and
thus ‘semantic’ and learns a redundant clustering function which can be computed robustly from
either modality (this is useful when a modality is unreliable, because of noise or compression).
Third, since clustering is inherently ambiguous, we propose to learn multiple clustering functions in
parallel, while keeping them orthogonal, in order to cover a wider space of valid solutions.

With these technical improvements, our method for Self-Labelling Videos (SeLaVi) substantially
outperforms the post-hoc approach (Yan et al., 2020), SeLa (Asano et al., 2020) applied to video
frames, as well as a recent multi-modal clustering-based representation learning method, XDC (Al-
wassel et al., 2019). We evaluate our method by testing how well the automatically learned clusters
match manually annotated labels in four different video datasets: VGG-Sound (Chen et al., 2020),
AVE (Tian et al., 2018), Kinetics (Kay et al., 2017) and Kinetics-Sound (Arandjelovic & Zisserman,
2017). We show that our proposed model results in substantially better clustering performance than
alternatives. For example, our method can perfectly group 32% of the videos in the VGG-Sound
dataset and 55% in the AVE dataset without using any labels during training. Furthermore, we
show that, while some clusters do not align with the ground truth classes, they are generally seman-
tically meaningful (e.g. they contain similar background music) and provide an interactive cluster
visualization2.

In a nutshell, our key contributions are: (i) establishing video clustering benchmark results on four
datasets for which labels need to be obtained in an unsupervised manner; (ii) developing and as-
sessing several strong clustering baselines using state-of-the-art methods for video representation
learning, and (iii) developing a new algorithm tailored to clustering multi-modal data resulting in
state-of-the-art highly semantic labels.

METHODOLOGY

Given a dataset D = {xi}i∈{1,...,N} of multi-modal data xi, our goal is to learn a labelling function
y(x) ∈ {1, . . . ,K} without access to any ground-truth label annotations. There are two require-
ments that the labelling function must satisfy. First, the labels should capture, as well as possible, the
semantic content of the data, in the sense of reproducing the labels that a human annotator would in-
tuitively associate to the videos. As part of this, we wish to account for the fact that semantic classes
are not all equally probable, and tend instead to follow a Zipf distribution (Abu-El-Haija et al., 2016;
Kay et al., 2017). We then evaluate the quality of the discovered labels by matching them to the ones
provided by human annotators, using datasets where ground-truth labels are known.

The second requirement is that the labelling method should not overly rely on a single modality. In-
stead, we wish to treat each modality as equally informative for clustering. In this way, we can learn
a more robust clustering function, which can work from either modality. Furthermore, correlating
of modalities has been shown to be a proxy to learn better abstractions Arandjelović & Zisserman
(2018); Korbar et al. (2018); Patrick et al. (2020); Owens & Efros (2018).

While our method can work with any number of data modalities (vision, audio, depth, textual tran-
scripts, . . . ), we illustrate it under the assumption of video data x = (a, v), comprising an audio

2https://www.robots.ox.ac.uk/~vgg/research/selavi
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stream a and a visual stream v. The following two sections describe our method in detail and show
how it meets our requirements.

Non-degenerate clustering via optimal transport Borrowing the notation from Asano et al.
(2020), we recall the cross-entropy loss E(q, p), between the labels given as one-hot vectors in
q (i.e. q(y(x)) = 1 ∀x) and the softmax outputs p of a network Ψ:

E(p, q) = − 1

N

N∑
i=1

K∑
y=1

q(y|xi) log p(y|xi), p(y|xi) = softmax Ψ(xi), (1)

where K is the number of clusters. This energy is optimized under the constraint that the marginal
cluster probability

∑N
i=1

1
N p(y|xi) = 1

K is constant (meaning all clusters are a-priori equally
likely). This then is a linear optimal transport problem, for which (Cuturi, 2013) provides a fast,
matrix-vector multiplication based solution.

Clustering with arbitrary prior distributions A shortcoming of the algorithm just described is
the assumption that all clusters are equally probable. This avoids converging to degenerate cases
but is too constraining in practice since real datasets follow highly skewed distributions (Abu-El-
Haija et al., 2016; Kay et al., 2017), and even in datasets that are collected to be uniform, they are
not completely so (Chen et al., 2020; Kay et al., 2017; Tian et al., 2018). Furthermore, knowledge
of the data distribution, for example long-tailedness, can be used as additional information (e.g.
as in (Piergiovanni et al., 2020) for meta-learning) that can improve the clustering by allocating
the right number of data points to each cluster. Next, we describe a mechanism to change this
distribution arbitrarily.

In the algorithm above, changing the label prior amounts to choosing a different cluster marginal r
in the polytope U(r, c). The difficulty is that r is only known up to an arbitrary permutation of the
clusters, as we do not know a-priori which clusters are more frequent and which ones less so. To
understand how this issue can be addressed, we need to explicitly write out the energy optimised
by the Sinkhorn-Knopp (SK) algorithm (Cuturi, 2013) to solve the optimal transport problem. This
energy is:

min
Q∈U(r,c)

〈Q,− logP 〉+
1

λ
KL(Q‖rc>), (2)

where λ is a fixed parameter. Let r′ = Rr where R is a permutation matrix matching clusters to
marginals. We then seek to optimize the same quantity w.r.t. R, obtaining the optimal permutation
as R∗ = argminRE(R) where

E(R) = 〈Q,− logP 〉+
1

λ
KL(Q‖Rrc>) = const +

∑
y

−q(y) [R log r]y. (3)

While there is a combinatorial number of permutation matrices, we show that minimizing Eq. (3)
can be done by first sorting classes y in order of increasing q(y), so that y > y′ ⇒ q(y) > q(y′), and
then finding the permutation that R that also sorts [R log r]y in increasing order.3 We conclude that
R cannot be optimal unless it sorts all pairs. After this step, the SK algorithm can be applied using
the optimal permutation R∗, without any significant cost (as solving for R is equivalent to sorting
O(K logK) with K � N ). The advantage is that it allows to choose any marginal distribution,
even highly unbalanced ones which are likely to be a better match for real world image and video
classes than a uniform distribution.

Multi-modal single labelling Next, we tackle our second requirement of extracting as much in-
formation as possible from multi-modal data. In principle, all we require to use the clustering

3To see why this is optimal, and ignoring ties for simplicity, let R be any permutation and construct a
permutation R̄ by applying R and then by further swapping two labels y > y′. We can relate the energy of R
and R̄ as:

E(R) = E(R̄) + q(y)[R̄ log r]y + q(y′)[R̄ log r]y′ − q(y)[R̄ log r]y′ − q(y′)[R̄ log r]y

= E(R̄) + (q(y)− q(y′)) ([R̄ log r]y − [R̄ log r]y′).
(4)

Since the first factor is positive by assumption, this equation shows that the modified permutation R̄ has a lower
energy than R if, and only if, [R̄ log r]y > [R̄ log r]y′ , which means that R̄ sorts the pair in increasing order.
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Table 1: Unsupervised labelling of datasets. We compare labels from our method to labels that are
obtained with k-means on the representations from a supervised and various unsupervised methods
on two datasets.

(a) VGG-Sound.

Method NMI ARI Acc. 〈H〉 〈pmax〉
Random 10.2 4.0 2.2 4.9 3.5
Supervised 46.5 15.6 24.3 2.9 30.8

XDC 18.1 1.2 4.5 4.41 7.4
MIL-NCE 48.5 12.5 22.0 2.6 32.9

SeLaVi 55.9 21.6 31.0 2.5 36.3

(b) AVE.

Method NMI ARI Acc. 〈H〉 〈pmax〉
Random 9.2 1.3 9.3 2.9 12.6
Supervised 58.4 34.8 50.5 1.1 60.6

XDC 17.1 6.0 16.4 2.6 19.1
MIL-NCE 56.3 30.3 42.6 1.2 57.1

SeLaVi 66.2 47.4 57.9 1.1 59.3

formulation Eq. (1) with multi-modal data x = (a, v) is to design a corresponding multi-modal
representation Ψ(x) = Ψ(a, v). However, we argue for multi-modal single labelling instead. By
this, we mean that we wish to cluster data one modality at a time, but in a way that is modality
agnostic. Formally, we introduce modality splicing transformations (Patrick et al., 2020) ta(x) = a
and tv(x) = v and use these as data augmentations. Recall that augmentations are random trans-
formations t such as rotating an image or distorting an audio track that one believes should leave
the label/cluster invariant. We thus require our activations used for clustering to be an average over
augmentations by replacing matrix logP with

[logP ]yi = Et[log softmaxy Ψ(txi)]. (5)

If we consider splicing as part of the augmentations, we can learn clusters that are invariant to
standard augmentations as well as the choice of modality. In practice, to account for modality
splicing, we define and learn a pair Ψ = (Ψa,Ψv) of representations, one per modality, resulting in
the same clusters (Ψa(ta(x)) ≈ Ψv(tv(x))). This is illustrated in Figure 1.

Decorrelated clustering heads. Conceptually, there is no single ‘correct’ way of clustering a
dataset: for example, we may cluster videos of animals by their species, or whether they are taken
indoor or outdoor. In order to alleviate this potential issue, inspired by (Asano et al., 2020; Ji et al.,
2018), we simply learn multiple labelling functions y, using multiple classification heads for the
network. We improve this scheme as follows. In each round of clustering, we generate two random
augmentations of the data. Then, the applications of SK to half of the heads (at random) see the
first version, and the other half the second version, thus increasing the variance of the resulting
clusters. This increases the cost of the algorithm by only a small amount — as more time is used for
training instead of clustering. As we show in the main paper, this substantially increases clustering
performance, so we apply this per default to our runs.

RESULTS

Table 1 shows the quality of the labels obtained automatically by our algorithm. We find that for the
datasets VGG-Sound and AVE, our method achieves state-of-the-art clustering performance with
high accuracies of 55.9% and 57.9%, even surpassing the one of the strongest video feature encoder
at present, the manually-supervised R(2+1)D-18 network. This result echoes the findings in the
image domain (Van Gansbeke et al., 2020) where plain k-means on representations is found to be
less effective compared to learning clusters. For ablations and results on Kinetics-400 and Kinetics-
Sound, we refer to the main paper.

CONCLUSION

In this work, we have shown how self-supervised clustering with optimal transport can be used to
obtain strong semantic labels for video datasets, without any supervision. In this extended abstract,
we show strong performance when comapred to the manual annotations for both the VGG-Sound
and the AVE dataset using various metrics.
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